Focus on: CASE STUDY

REPRINTED FROM

OBJECT

magazine

Developing a medical diagnostic
system with OOA/RD

The question for objects is no longer “Why?” but “How?”

I LA oooerosresssnsnsissstanssnnsssnsinionnnsssssassssasssssossssssnssssvasvssenssasnpynssstdsensansnnsissspovsocss

O REALIZE THE full benefits of ob-
jects, the object paradigm must ex-
tend beyond the programming phase
of the software development process.
While the spotlight of the software com-
munity has been directed at object-oriented
programming (OOP), the more important
issue of object orientation as a development
philosophy remained on the collective pe-
riphery. As object technology gains popu-
larity, this issue is forced to become the fo-
cal point of the community. The question
for objects is no longer Why? but How?

BACKGROUND
Different people develop software differ-
ently, yet a common thread is woven through
all software development activities. From
the solo hobbyist coding to the multiperson
teams building the next generation securi-
ties trading system, all will experience an un-
derstanding of the problem, a selection of a
solution, and a creation of that solution.
This process is also known as analysis,
design, and implementation:

+ Analysis is the study of a problem. The
analysis of a problem concentrates on
what must be done and not how it is
to be accomplished. The result of the
analysis efforts is a set of descriptions
of the problem.

Design is the selection of a particular
solution for a given problem. A solution
specifies exactly how the problem is to
be solved. The results of the design work
are specifications and policies that guide
the construction of the solution.

Implementation is the creation of the
chosen solution for the problem. During

Jim Ladd is Software Manager at Abbott
Laboratories, Irving TX.

the implementation phase, the source
code is produced according to the de-
sign specifications and guidelines.

Although all software constructors (indi-
vidual and organizational) perform analy-
sis, design, and implementation, far fewer
use formal methods, techniques, and tools
to do so. The question should not be
whether such things are advantageous. The
question is how to forge the methods, tech-
niques, and tools into an effective and
efficient software development paradigm.

YET ANOTHER BLOOD ANALYZER—YABA
One of our more recent projects to follow
the Shlaer-Mellor method is one I will re-
fer to as the YABA (yet another blood an-
alyzer). The YABA is a medical diagnostic
instrument for determining the character-
istics of certain components of white blood
cells. The goal of the YABA is to automate
the steps of the testing protocol.

The testing protocol is a controlled series
of operations performed on the cells. Chem-
icals are added to the blood sample and the
mixture is incubated. Depending on the type
of test, additional mixing and incubation cy-
cles may be performed. When the chemical
reactions are completed, the sample is ex-
posed to a detection system that gathers raw
data. Finally, this information is processed
and reduced to a set of final results.

The automation of the testing proce-
dure is accomplished through the intelli-
gent coordination of electro-mechanical
devices. The major components of the
YABA include a fluidics system for liquid
chemical management and distribution,
an incubator, an image processing mod-
ule for assay detection, and two 3-axis
robotic platforms for transporting the sam-
ples within the instrument. Small electric

motors and solenoids actuate the mecha-
nisms of the components.

The requirements for the YABA extend
beyond the real-time control of the instru-
ment. The YABA provides the user with test
protocol configuration, sample and patient
data management, results analysis, report
generation, and diagnostics capabilities.

Analysis

The first step of the analysis was to partition
the problem into domains. The latest ver-
sion of the YABA domain chart is shown in
Figure 1. At the top of the chart is the ap-
plication domain that was the most specific
to the project. After the initial analysis was
completed, the application domain was di-
vided into two subsystems. The instrument
subsystem was concerned with the process-
ing of the sample and contained objects of
the instrument such as the Input Load Sta-
tion, the Pipettor, and the Reader Robot. The
other application subsystem contained the
objects that were of more interest to the user.
Objects within this subsystem included the
Patient, Results Report, and Test List. A few
objects, such as Sample and Test, were shared
by the two subsystems.

The application domain required the ser-
vices of other domains. These domains con-
sisted of the subject matter that was less specific
than the application domain. The service do-
mains of the YABA include the following:

+ Scheduler: This domain reserves the in-
strument’s components according to the
resource and timing requirements of the
test protocols. It calculates and main-
tains the timelines for the different re-
sources (pipettor, optics system, etc.)
within the instrument. Objects for this
domain include the Protocol, the Activ-
ity, and the Resource objects.

NOVEMBER-DECEMBER 1994



DEVELOPING WITH OOA/RD

0 000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 000000000 0CCGCOIOIOTS

+ Command sequence: Once a Protocol
reserves a Resource object, that Resource
must perform an Activity at the sched-
uled time. The Activity object is a se-
quence of commands. This domain
parses the Activity into the underlying
commands and monitors their execu-
tion. The Aspirate Command, Level Sense
Command, and Get Tray Command are
a few of the objects of this domain.

Motor controller: The Motor Controller
domain accepts, queues, and executes
motor-specific instructions for the cus-
tom-built motor controller. This domain
includes the Move Command and the Stop
Command objects.

Image processing: The Image Process-
ing domain performs the operations
needed to acquire, manipulate, and an-
alyze images. Object-oriented analysis
was not used for this domain because the
algorithms were “discovered” through
theoretical and experimental work and
modeled with standard flow charts.

Process I/O: This domain interfaces with
the outside world. It is concerned with
interface entities such as hardware in-
terrupts and I/O ports.

User interface: This domain deals with the
human interface screens and the corre-
sponding user interaction. The Patient De-
mographics Screen and the Test Ordering
Screen are two objects within this domain.

.

GUI: The GUI domain provides the win-
dow management and display functions.
The GUI is a commercial package and
provides the functions common to prod-
ucts of this type.

The architecture domain is concerned with
the organization of data and control of
the software. It was specified during the
design phase.

The domains at the lowest level of the chart
involve the implementation entities. These
domains include the operating systems and
programming language. The network inter-
face was a commercially available package
and did not require analysis. These domains
were also selected during the design phase.

A benefit of domain analysis is the po-
tential for reuse of work. The lower domains
have the greatest potential. Obviously, the

~ Application

User
Interface

© Domain

Motor
Controller
Process

/10

Bridge

Scheduler
Command
Sequence
Image
Processing

Domain with Bridge
to Architecture

G

Figure 1. YABA domain chart.

operating system and programming lan-
guage domains are extremely reusable. The
service domains also provide opportunities
for reuse. For example, the objects of the
motor controller domain are “unaware” of
the YABA system; they operate in a con-
tained world. The analysis models could be
easily applied to other projects requiring
the service of a motor controller. The ap-
plication domain offers the least reusabil-
ity due to its project specificity. However,
objects within this domain would provide
an excellent starting point for the applica-
tion domain of a similar project.

After the domains were identified, the
analysis within the domains began. A small
group (>5) of analysts (in our case, engi-
neers with their analysis hats on) would
meet to define a domain’s mission state-
ment and brainstorm for obvious objects.
At the conclusion of the initial meeting, a

single analyst was assigned responsibility
for the domain. Over time, if the subject
matter of a domain was too much for the
solo analyst, the domain was partitioned
into subsystems. The boundary of the in-
dividual was reduced from the domain to
the subsystem level. Review meetings were
used to update the other analysts on the
progress of the models.

The actual act of analysis can be imposing
even at a subsystem level. Several techniques
were adopted by the software group to sim-
plify the task. One technique was to model
the normal behavior of the objects in the ini-
tial analysis. The required failure analysis and
error handling were modeled after the nor-
mal behavior of the objects became stable.

A major doctrine of the Shlaer-Mellor
method is that the analysis models should
be exact and complete descriptions of the
problem. By embracing this philosophy,

OBJECT MAGAZINE



Focus on: CASE STUDY

©00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

the analysis efforts on the YABA drove the
discovery process toward a greater under-
standing of the problem. If the informa-
tion was not available to complete a model,
it was sought. In the worst of cases, as-
sumptions were made and thoroughly doc-
umented. The analysts were forced to ad-
dress the unresolved issues and come to
some convergence.

Design

One of the first design decisions was the sep-
aration of the real-time control from the
human interface functions. These two ar-
eas have very distinct objectives, require-
ments, and constraints. Because the oper-
ating systems, utilities, and other programs
for one area do not adequately address the
needs of the other, an architecture with two

If the present rate of
improvement in the CASE
arena can be maintained,

the future of software
engineering automation
should be very exciting
and rewarding.

complete computing environments was
chosen. An off-the-shelf personal computer
was selected for the human interface and
configured with the standard accessories.
UNIX was chosen for the operating system
on the human interface computer.

A passive-backplane industry-standard
architecture (ISA) computer was selected to
execute the control software. The control
computer contained a motor controller
board, image processing board, and input/
output board. The control computer would
run Intel’s iRMX real-time operating system.
An Ethernet connection with the TCP/1P
protocols provided the communications
channel between the two computers.

The C programming language was cho-
sen over C++ because, at the time of the de-
cision, our group had (1) no experience with
C++, (2) little confidence in the C++ compil-
ers for the embedded processors, (3) a strong
desire for homogeneity across the processor
boundaries. Additional work was necessary

to integrate C into the Shlaer-Mellor method,
but the alternatives were less attractive.

A set of rules was generated that specified
the policies and guidelines for the software
construction. Included in the rules were the
object distribution among the CPUs, data
and control organization, and system ini-
procedures. The design
specification also included templates for the
source and header files. These files consisted
of formats for the function prototypes, state
transition tables, and initialization func-
tion. The templates would be completed

tialization

during the implementation phase.
Another task of the design phase was the
construction of the software architecture.
The architecture is the mechanism in which
objects communicate and events are pro-
cessed. For the YABA project, an asyn-
chronous state-oriented architecture was
designated for each microprocessor in the
system. This architecture is basically an en-
gine that manages a state transition table
for every instance of every object in the pro-
cessor space. The engine is very adaptable
to different computing environments. It was
modified to work with the UNIX and iRMX
operating systems. The architecture was also
adapted to the motor controller micropro-
cessor, which had no operating system.

Implementation

In the implementation phase, programmers
transformed the analysis models into source
code according to the design rules. Devia-
tions from the design rules were not allowed.
If a question or issue surfaced, it was ad-
dressed by modifying the design rules or
clarifying the analysis models.

The code generation was very straight-
forward and mechanical. The source and
header templates were completed for each
object using information from the analysis
models. Each process of the process model
became a function in the C programming
language. The task of code generation was
extremely scalable. The time required for
coding was dependent on the number of
analysis models and the amount of pro-
gramming resources available.

On previous projects, there has been
much debate on the type and amount of
comments to be place in the source code.
This argument was finally settled on the
YABA project. No comments were to be in

the source code. The valuable information
is in the analysis models and design rules.
The source code is now relegated to the same
level as assembly and machine code.

Debugging
The software produced with this process
encourages debugging strategies that differ
from those used with traditional software.
If a problem arose during program execu-
tion, first the source code was compared
with the analysis models. If a discrepancy
was found, the error was fixed and debug-
ging continued. If no deviations were dis-
covered, the analysis models were inspected
for errors. Typically, the events of the ob-
ject were manually traced and the corre-
sponding transitions of the objects observed.
For very evasive bugs, manual event trac-
ing through the models proved difficult and
alternative approaches were examined. One
approach was to use the executable code as
a debugging platform even though the sys-
tem might be incomplete. With object-
based software, attention can be directed
to the behavior of a single object or the ob-
jects within a domain with minimal effort.
Only the events that cause the objects to
transition must be provided for this activ-
ity; it does not require involvement of the
entire system.

CASE Tools

The fundamental concepts of the Shlaer-
Mellor method encourage a high level of
automation. Unfortunately, potential is one
issue and realization is another. When the
YABA project was in development, few
CASE tools supported OOA/RD. The prod-
ucts that did were somewhat overly opti-
mistic in their claims. Still, while the early
tools were limited in features and were at
times difficult to use, the software group
continuously embraced CASE technologies
because (1) while imperfect, the available
CASE support added value to the process,
and (2) all advancements provided by the
tools would improve the analysis and de-
sign efforts of the group.

Recently, after a number of years of in-
activity, the CASE vendors are now taking
notice of the potential for automating the
OOA/RD processes. The field is becoming
populated with tools offering automation
in different parts of the process. Simula-

NOVEMBER-DECEMBER 1994



' SHLAER-MELLOR METHOD

Although it is best known for its approach
to object-oriented analysis, the Shlaer-Mel-
lor method defines a complete paradigm
 for the analysis, design, and implementa-
tion of software systems. The method com-
' bines Object-Oriented Analysis (00A) and
Recursive Design (RD) techniques in a
comprehensive approach for software de-
velopment. OOA describes the notation,
models, and procedures necessary to dis-
cover and model objects in the problem
space. RD provides the transition policies
and guidelines from the analysis to im-

plementation. The Shlaer-Mellor method
also includes the process for applying OOA
and RD to a system. -

The 0OA method uses three primary
models to describe the problem space:

+ Information models
» State models

« Process models

Integrated together in a comprehensive
method, the models produced represent
a complete and consistent description of

—%

m Implementation

Traditional process.

Application
Domain
Analysis

Implementation
Domain
Selection

Analysis

Architecture

Service

Domain Implementation

Domain
Design

Shlaer-Mellor process.

the problem. The models are so complete
that they are, in fact, executable and offer

the opportunity to verify the correctness
of the analysis. "

The cornerstone of recursive design is
the design-by-translation concept. The anal-
ysis models are translated directly into code
by applying design rules. The design phase
focuses on the selection and creation of the
rules and not on another set of models. The
design rules guide the construction of the
solution. During the implementation phase, |
the rules are applied to the analysis mod-
els to generate the source code.

The Shlaer-Mellor development pro-
cess relies heavily on the concept of do-
mains and bridges. Domains consist of
specific subject matter. In the object world,
domains are composed of closely related
objects. Bridges are the connections be-
tween the domains. Recursive design defines
four types of domains. The application do-
main consist of the material that concerns
the user. Service domains provide generic
functions. The architecture domain dic-
tates the management of data and control
of the system. The implementation domains
are the programming languages and oper-
ating systems.

tion and animation of the state models and
analysis-to-code translation are just two
of the critical technologies offered by the
latest versions of CASE tools. The prod-
ucts are also improving in other, more stan-
dard ways including enhanced report gen-
eration, better static checking of the
models, more intuitive human interfaces,
and open databases. If the present rate of
improvement in the CASE arena can be
maintained, the future of software engi-
neering automation should be very excit-
ing and rewarding.

RECOMMENDATIONS

The paradigm shift to object-oriented tech-
nology can be a confusing and frustrating
passage. When coupled with the shift to the
Shlaer-Mellor method, the task can be over-
whelming at times. To accelerate the learn-
ing process for OOA/RD, the following rec-
ommendations are offered:

1. Acquire formal training whenever pos-
sible. Learn the fundamentals of the tech-
nology from the masters.

2. Target a microproject (< 6 objects) and
take it through the analysis, design, and
implementation phases.

3. Document everything. The trail will be
valuable in post-project analysis and
studies.

4. Avoid the temptation to “just code it.”
Follow the process by completing the
analysis models and design rules before
starting the implementation.

5. Don’t get discouraged. Rigorous analy-
sis is difficult and requires effort and time
to master.

SUMMARY
The results of our efforts with the Shlaer-
Mellor analysis and design method were bet-

ter documentation, improved understand-
ing of the problem, increased communica-
tion among the team members, freedom
from implementation technologies, and an
increased potential of reusable work prod-
ucts. All team members were impressed by
the 00A/RD methods and wanted to apply
the paradigm to other projects.

The Shlaer-Mellor Method, however, is
not for everyone. Those comfortable with
traditional development practices might
have difficulty adapting to the new
paradigm. The shift from a code- or de-
sign-based process to an analysis-centric
one can be as challenging as the shift to ob-
ject technologies. To realize the potential
benefits, the policies and guidelines of the
process must be followed faithfully. For
those who wish to migrate from software
crafting to software manufacturing, the
Shlaer-Mellor development paradigm is an
excellent alternative.

For further information, please contact
Project Technology at 1-510-845-1484.

PROJECT TECHNOLOGY

Shlaer-Mellor Method

Reprinted by permission of SIGS Publications, Inc., 71 West 23rd Street, New York, NY, 10010. (212) 242-7447
Reprinted by Reprint Management Services, (717) 560-2001.



