

 SOFWERX | 1925 E 2nd Avenue, Suite 102, Tampa, FL 33605

sofwerx.org | 813.693.5599

Infrared Transmit Validation for the Raspberry Pi

Rob Simon

Jim Ladd

August 11, 2020

 SOFWERX | 1925 E 2nd Avenue, Suite 102, Tampa, FL 33605

sofwerx.org | 813.693.5599

Contents
Introduction .. 3

Problem Domain ... 3

Solution Domain ... 3

Looking Back and Moving Forward ... 8

Where to Find ... 9

References .. 9

 SOFWERX | 1925 E 2nd Avenue, Suite 102, Tampa, FL 33605

sofwerx.org | 813.693.5599

Introduction
Infrared (IR) technology has been used to wirelessly control consumer electronics since 1980 [1].

Sometime later, computers began emulating the IR signals so the control could be done

programmatically. While this approach allows computer interfacing where none was intended, the issue

is that the signal is unidirectional. There is usually no way to ensure the target device received and

successfully processed the IR signal. A project at SOFWERX relied on IR to remotely control a target

device. In theory, the approach was attractive but, in practice, it was unreliable. This paper describes

an approach to increase the stability of this type of computer interface by validating the IR signal

transmission.

Problem Domain
The goal of the project was to programmatically control a target device. The only interface to this
device is a hand held remote control similar to the ones used for consumer electronics. The remote
control relied on a unidirectional infrared signal. There is no feedback loop to validate that the signal
was received and processed correctly by the target device.

Since the target device was already selected when we inherited the project, we moved ahead with the
IR-based communications with the hope that we could overcome the challenges of this technology.
From past experience, IR-based integrations can be difficult to achieve acceptable reliability.

The high level diagram of the problem space is shown below:

IR
Receiver

Target

Device

IR
Transmitter

Host

Platform

Custom
Software

Solution Domain

The path from the problem space to the solution space is littered with more decisions, some solid and
some questionable. The major decision was to use the Raspberry Pi (RPi) single board computer as the
host platform. The RPi is a great selection for these types of projects. It is inexpensive, expandable, and
well known. Our hardware architecture is slowly emerging as shown in the diagram below.

 SOFWERX | 1925 E 2nd Avenue, Suite 102, Tampa, FL 33605

sofwerx.org | 813.693.5599

IR
Receiver

Target

DeviceRaspberry Pi

The RPi boards do not provide an IR transmitter as a built-in feature. There are add-on or expansion
boards available. These boards use the RPi’s General Purpose Input/Output (GPIO) interface. The IR
board selected from the initial effort is shown below. There is no vendor designation, only the label of
“IR Remote Shield v1.0”. This board supports both IR transmit and IR receive operations. It is readily
available and extremely inexpensive.

The “IR Remote Shield v1.0” product does not include drivers or interface software. Fortunately, there

is an open source effort that provides the low level processing required to send and receive IR signals.

LIRC or Linux Infrared Remote Control allows the IR signals to pass through the RPi. LIRC was first

established in 1999 and has several distribution packages including one for the Raspberry Pi platform

[2].

The LIRC package provides a set of executable programs that are used for sending and receiving the IR

signals. The most common program for sending is the “irsend” executable. This program is invoked

through the python subprocess library. A diagram of the major components of the LIRC are show below.

 SOFWERX | 1925 E 2nd Avenue, Suite 102, Tampa, FL 33605

sofwerx.org | 813.693.5599

Receiver

IR Remote
Shield

V1.0

Transmitter/dev/lirc0

/dev/lirc1

irsend
Custom

Software

LIRC software

An example of an irsend invocation in python is shown below:

subprocess.call(["irsend", "SEND_ONCE", "lircd.conf", "KEY_MODE"])

This line of code invokes the “irsend” executable with three arguments. The “SEND_ONCE” value

denotes that the data should be sent only one time. The “lircd.conf” is the name of the device in a

configuration file. The irsend program will read the configuration for this name and use that

information to drive the structure of the IR waveform. The “KEY_MODE” represents a button on the

remote control. The irsend program looks up this name in the configuration and retrieves the numerical

value. This value is the hexadecimal value of the pulses and spaces for that specific button.

The target device can be controlled though the sequence of different button presses. The lengths of

these sequences range from a single button press up to a total of 13 presses. If all went well, we would

have finished the coding of the button sequences and be done with the project. However, during the

execution of the longer button sequences, the target device would enter an error state. We even had

the custom software on the RPi drive multiple target devices and they consistently error at the exact

same step in the process.

After much investigation and testing, we narrowed the culprit of the issue to either the LIRC software or

the IR expansion board. Since the IR interface is unidirectional, the custom software had no mechanism

to confirm or validate the information that was transmitted. Reviewing the IR expansion board’s layout,

we discovered that the transmit circuit was independent of the receive circuit. In theory, custom

software could 1) begin receiving the inbound IR signal, 2) in a separate thread, transmit the button

press data, and 3) compare the received information to the sent data. This software would create a

 SOFWERX | 1925 E 2nd Avenue, Suite 102, Tampa, FL 33605

sofwerx.org | 813.693.5599

simple feedback loop and, hopefully, catch signals that were not being transmitted correctly. The

software architecture for this feature is shown below.

Receiver

IR Remote
Shield

V1.0

Transmitter/dev/lirc0

/dev/lirc1

irsendPython
Sender/
Receiver

Custom
Software

LIRC software

To understand how the IR works at a more granular level, please refer to the IR Remote Control Primer

[3] article. The material presented is very relevant to this project.

The LIRC package provides a configuration mechanism for tailoring the IR signaling to different

protocols, vendors, and devices. One or more device definitions can be specified in the configuration

file. In this project, the name of the file is, confusingly, the same as the device name used within the

file. The path to the configuration file in a standard installation is:

 /etc/lirc/lircd.conf

This file contains the details of the IR protocol for the remote control and device. The protocol details

along with definitions of a few “buttons” are shown below.

begin remote

 name lircd.conf

 bits 16

 flags SPACE_ENC|CONST_LENGTH

 eps 30

 aeps 100

 header 9139 4495

 one 622 1631

 zero 622 517

 ptrail 622

 repeat 9141 2213

 pre_data_bits 16

 pre_data 0x33B8

 gap 108580

 toggle_bit_mask 0x0

 begin codes

 KEY_POWER 0x807F

 SOFWERX | 1925 E 2nd Avenue, Suite 102, Tampa, FL 33605

sofwerx.org | 813.693.5599

 KEY_1 0x8877

 KEY_2 0x48B7

 KEY_3 0xC837

 KEY_4 0x28D7

 KEY_5 0xA857

 KEY_6 0x6897

 KEY_7 0xE817

 .

 .

 .

 KEY_DIM 0x58A7

 KEY_A4 0x14EB

 KEY_C-F 0xD827

 end codes

end remote

To further understand how the configuration data is actually used, we leverage the output of one of the

LIRC programs called “mode2”. The mode2 software is a command line executable that outputs the

pulse/space values when an IR signal is received. These values signify something in the configuration

file. Once the “header” is received, the following pulse/space pairs should denote either a “one” or a

“zero”. In turn, every four binary values represent a hexadecimal value. When 32 binary values (or 8

hexadecimal values) are received, the combined characters or the numerical value can be mapped to a

button or key such as KEY_POWER or KEY_MODE. The following is the beginning of an actual output of

the mode2 program. The first column denotes if the data presents a space or a pulse. The second

column is the value of the space/pulse. The third column (or #) translate to a value in the configuration

file such as “header”, “one”, “zero”, etc. The final column (or ##) is the hexadecimal value of the last

four binary numbers received.

space 16777215

pulse 9131

space 4519 #header

pulse 594

space 519 #zero

pulse 623

space 516 #zero

pulse 619

space 1658 #one

pulse 594

space 1633 #one ##3

pulse 619

space 519 #zero

pulse 619

space 519 #zero

pulse 621

space 1657 #one

pulse 596

space 1631 #one ##3

 SOFWERX | 1925 E 2nd Avenue, Suite 102, Tampa, FL 33605

sofwerx.org | 813.693.5599

pulse 619

space 1661 #one

pulse 592

space 544 #zero

pulse 595

space 1656 #one

pulse 595

space 1656 #one ##B

Now that the decoding of space/pulse pairs is known, the design of how to codify this process must be

performed. One approach is to use the mode2 as a command line program similar to that of the irsend

program. The key difference is that with the mode2, the output of the program must be captured. Also,

the mode2 program must be terminated when all of the space/pulse data is received. While this could

be done at the operating system level, a design that was more native to python was desired. We were

not alone in this train of thought. A posting on a GitHub project in 2016 suggested a python version of

mode2 be developed and included a snippet of code as a suggestion [4]. We decided to use this snippet

as the beginning of our custom sender/receiver software.

Two python files were developed in our attempt to validate the IR transmission. The irsend2.py file is

responsible for creating a thread that reads the LIRC device (i.e. /dev/lirc1) used for receiving inbound

signals. Once the thread is created, the input “key” is sent via the information in the specified

configuration file. Once the listening thread has received all of the inbound data, it joins with the main

thread with the “pulse/space” data similar to the mode2 program.

The second python file, decode.py, is responsible for translating the “pulse/space” data into one of the

keys specified in the configuration file. This value is then compared to the key that was sent. If the pair

match, a Boolean true is returned to the calling function. If the values do not match, a Boolean value of

false is returned. In the event of a false value, we know that an error occurred at some point in the IR

signal send/receive cycle. We can then resend the key that produced the error which, theoretically,

should prevent the clock from receiving a faulty signal.

Looking Back and Moving Forward
The good news is that the irsend2 software, even in the rough proof-of-concept state, performed as
expected. It was able to detect when the IR signal did not match the intended value. The bad news is
that we suspect the hardware is at fault. Even with different expansion boards (but of the same model),
the signals received did not match the intended values. The only option is to replace this expansion
board either from a different vendor or a custom board.

Although the LIRC software has been around for many years, the last update to the code was done three

years ago in September of 2017. Such inactivity is a concern. For example, in April of 2019, a new

kernel for the Raspberry Pi was released and caused issues with several working installations of LIRC.

Also, some of the programs in LIRC have simply stopped working with the new version of the kernel. A

better approach would be a lightweight python-based version of the irsend and mode2 software.

 SOFWERX | 1925 E 2nd Avenue, Suite 102, Tampa, FL 33605

sofwerx.org | 813.693.5599

Where to Find
The link to the Git repository is:

https://github.com/sofwerx/irsend2

References

[1] S. Beschloss, "Object of Interest: Remote Control," New Yorker, 22 11 2013. [Online]. Available:

https://www.newyorker.com/tech/annals-of-technology/object-of-interest-remote-

control?utm_source=onsite-share&utm_medium=email&utm_campaign=onsite-

share&utm_brand=the-new-yorker.

[2] "LIRC Home Page," [Online]. Available: https://www.lirc.org/. [Accessed 10 08 2020].

[3] Phidgets, "IR Remote Control Primer," [Online]. Available:

https://www.phidgets.com/docs/IR_Remote_Control_Primer. [Accessed 10 08 2020].

[4] "LIRC mode2 support #13," [Online]. Available: https://github.com/tompreston/python-

lirc/issues/13. [Accessed 10 08 2020].

https://github.com/jladd413/irsend2

