
���������	
�����

In today’s complex enterprise systems environment, many customers desire to integrate key
legacy applications using the terminal interface to access both logic and data. They often need
to do this when the legacy system is lacking a sufficient programmatic interface, and they wish
to avoid the significant cost and risk of rewriting the terminal interface’s encapsulating busi-
ness logic. When these terminal interface integrations involve complicated business processes
and applications, their complexity often triggers an explosion of difficult to manage navigation
paths. This adds cost and risk to integration development, and leaves the customer exposed to
the challenge of managing complex integrations among continual end-application modifica-
tions.

 Legacy Navigator addresses the issues around complex navigation paths through the graphical
depiction of terminal-based integrations.
Legacy Navigator provides the ability to
logically name relevant items in terminal
interface integrations (screens, text posi-
tions, screen events, etc.) and use them to
create graphical process models of the inte-
gration.

The visual representation makes the com-
plex navigation paths far easier to under-
stand, and when screen or process changes
occur, developers need only to modify the
graphical process model. This provides an
environment that simplifies integration
development and maintenance, because all
navigation paths can be seen and changes
can be made rapidly, often without code
modifications.

 Six Stage Development Process

Using Legacy Navigator involves a six-step development process:

1. Define Screens: name screen, data fields, and field positions.
2. Describe Events: define what items or changes within a screen will drive the integration

process using pre-built Legacy Navigator components or extend functionality through
custom built Java classes.

3. Develop Actions: establish what will be executed in response to an event using pre-built
Legacy Navigator components or extend functionality through custom built Java classes.

4. Create Conditions: describe Boolean conditions to be evaluated before processing actions.
5. Model Process: graphically depict integration using above components.
6. Execute Process: start and manage execution utilizing Legacy Navigator API.

After integration development, use the Legacy Navigator environment to adapt to ongoing
business process or end-applications changes.

���������� ����� 	���������� �	���
� �������� �������

�
www.wazeegroup.com�

������� ���������! ���"��#$�

• Reduces development
time

• Simplifies ongoing

maintenance

• Enables practical

development of complex
integrations

������� ���������

%���	��#$�

�

• 100% data-driven and
configurable

• 100% Java Components

• 100% compliant with

Red Oak Legacy
Integrator

• Enables integration

modifications without
code changes

�

& #��������� ���������
����$�

�

• Screen flow is complex
(generally > 7 screens)

• Process includes many

paths / exceptions

• End applications change

often (especially when
change management is
limited)

Graphical development and maintenance environment for complex,
terminal-based integrations.

Copyright © 2002 by Wazee Group, LLC. All rights reserved. Printed in USA.

Legacy Navigator process model.

Legacy Navigator™
������������	
����

