

 SOFWERX | 1925 E 2nd Avenue, Suite 102, Tampa, FL 33605

sofwerx.org | 813.693.5599

First Steps Toward CI/CD with WordPress,

SiteGround, and GitHub

Lewis Morgan

Patrick Schippers

Jim Ladd

December 29, 2020

 SOFWERX | 1925 E 2nd Avenue, Suite 102, Tampa, FL 33605

sofwerx.org | 813.693.5599

Contents
Introduction .. 3

Background ... 3

Automating the Staging Deployment Process .. 3

Looking Back and Moving Forward ... 6

Appendix A – YAML file ... 7

 SOFWERX | 1925 E 2nd Avenue, Suite 102, Tampa, FL 33605

sofwerx.org | 813.693.5599

Introduction
Continuous Integration/Continuous Development (CI/CD) processes have been at the forefront of the

software development industry for several years now. While CI/CD concepts are easy to grasp, they can

be difficult to implement while maintaining schedules and achieving milestones. This paper describes

our initial steps toward a CI/CD pipeline for our client facing websites that use WordPress and

SiteGround. We incorporate GitHub’s repository to maintain our source code while using GitHub’s

Actions service to automate the deployment to a staging environment hosted by SiteGround.

Background
The current deployment process for the SOFWERX’s websites is very traditional. The coding and
developer-based testing activities are performed on local environments. When the programmer deems
the code ready, it is deployed to a remote staging environment hosted by SiteGround for a small set of
internal users to review. Once their approval is received, the code is deployed to the production
environment. The data maintained in the different databases follows a reverse path. The staging
database is refreshed with data from the production environment and then the development database
is refreshed with the data from the staging environment. A diagram of these processes is shown below:

Development
(Flywheel – Local)

Staging
(Cloudflare)

Production
(Cloudflare)

Code Code Code

Database Database Database

Deploy Deploy

Refresh Refresh

Figure 1 - Traditional development process

Not only is this process traditional, it is also very manual and tedious. The team at SOFWERX wanted to

move toward automation with a Continuous Integration/Continuous Deployment (CI/CD) pipeline but

we needed to do so in logical steps that didn’t interfere with our existing schedules and milestones.

The Teamwerx website (teamwerx.org) within the SOFWERX realm provides a platform to host prize
challenges and is currently not being used. This website is built with WordPress and hosted by
SiteGround. Since this is the same technology and hosting service used by our primary website system,
the Teamwerx website provides an excellent proof of concept base for migrating toward a CI/CD
pipeline.

Automating the Staging Deployment Process
The goals of this initial effort were to 1) place the deployment artifacts under version control and 2)

automate the deployment process from the development environment to the staging environment.

 SOFWERX | 1925 E 2nd Avenue, Suite 102, Tampa, FL 33605

sofwerx.org | 813.693.5599

GitHub was selected for the repository service. It is a very popular selection in the industry and is well

known within our company. In fact, SOFWERX currently has 283 repositories in GitHub. Unlike most of

the other repositories, this one is private with access only to the in-house development team.

The process steps for the promotion to the staging environment include:

1. The user will checkout the develop branch from GitHub
2. The user will push changes to the remote repository.
3. The user will submit a pull request.
4. GitHub will perform a backup of the staging database.
5. GitHub will transfer the code to the staging environment.

A diagram of this process is shown below:

Development
(Flywheel – Local)

Staging
(SiteGround)

Production
(SiteGround)

Code Code Code

Database Database Database

Deploy Deploy

Refresh Refresh

Figure 2 - Initial CI/CD pipeline model

GitHub provides a service called Actions that helps with the automation of tasks within the development

process. The Actions service consists of event-driven workflows. Each workflow contains a job which

consists of a set of steps. These steps control the sequence of the actions which perform the actual

processing. A graphical representation of this model is shown below:

 SOFWERX | 1925 E 2nd Avenue, Suite 102, Tampa, FL 33605

sofwerx.org | 813.693.5599

Job

Step 1

Action

Step 2

Action

Step 3

Action

Event

Figure 3 - GitHub workflow components

GitHub uses YAML (Yet Another Markup Language) syntax to define the events, jobs, and steps used in

the automation. The structure of the workflow YAML file is very similar to the model presented above.

The YAML file used in our project is presented in Appendix A of this document.

One of the key features of the GitHub Actions service is the use of “secrets”. Secrets are variables that

store sensitive data and can only be viewed by services such as the Actions service. Our YAML file has

the following eleven secret types, grouped into three different sets.

SSH_PRIVATE_KEY

SSH_PASSPHRASE

SSH_HOST

SSH_PORT

SSH_USER

DB_STAGE_USER

DB_STAGE_PASSWORD

DB_STAGE_NAME

FTP_STAGE_SERVER

FTP_STAGE_USER

FTP_STAGE_PASSWORD

Our workflow is partitioned into two major jobs, backup and deploy. The backup job creates a copy of

the staging database and uploads this file as an artifact of the workflow instance. The major challenge

with this job was to programmatically access the staging environment via SSH in order to make a SQL

dump of the database. A config file used by the SSH software is dynamically created on the Ubuntu-

based runner instance. The contents of the config file consist primarily of the SSH secrets. The

SSH_ASKPASS feature of the SSH software bypasses the prompting for a passphrase. Finally, the job

uses the “actions/upload-artifact” action to upload the backfile to GitHub as an artifact of this workflow

instance.

 SOFWERX | 1925 E 2nd Avenue, Suite 102, Tampa, FL 33605

sofwerx.org | 813.693.5599

The deploy job relies on the successful completion of the backup job as a pre-requisite condition. If the

database was successfully archived, the deploy job uses the “actions/checkout” action to checkout the

repository. The next step uses the “SamKirkland/FTP-Deploy-Action@3.1.1” action to upload the

repository to the staging environment in SiteGround via FTP.

Looking Back and Moving Forward
This project proved to be more challenging than first envisioned. At this point in the adoption lifecycle
of CI/CD pipeline technologies, we expected more knowledge to be available with the WordPress,
GitHub, and SiteGround stack. However, the information that we uncovered was scattered and
fragmented. After significant effort, we are pleased with the results of the initial effort and excited with
continuing moving forward.

The next steps will be partitioned into two major tasks. The first is to automate the deployment from
the staging environment into the production environment. The second is to reduce the amount of
manual database management required. We wish to isolate the WordPress generated data from the
user generated data so that deployment of new WordPress components will not impact the existing
data structures or values.

 SOFWERX | 1925 E 2nd Avenue, Suite 102, Tampa, FL 33605

sofwerx.org | 813.693.5599

Appendix A – YAML file

name: Staging Deployment

on:

 push:

 branches:

 - staging

jobs:

 # Database Backup

 backup:

 runs-on: ubuntu-latest

 name: Create Database Backup

 env:

 SSH_KEY: ${{ secrets.SSH_PRIVATE_KEY }}

 SSHPASS: ${{ secrets.SSH_PASSPHRASE }}

 SSH_HOST: ${{ secrets.SSH_HOST }}

 SSH_PORT: ${{ secrets.SSH_PORT }}

 SSH_USER: ${{ secrets.SSH_USER }}

 steps:

 # 1. Create a run timestamp output with id=time name=date

 - name: Get date timestamp

 id: time

 run: echo "::set-output name=date::$(date '+%Y-%m-%d_%H-%M-%S')"

 # 2. Configure SSH Access on GH CI to the staging machine

 - name: Configure SSH Access

 # Creates a ssh config file with the key/host/port/user

 run: |

 mkdir -p ~/.ssh/

 echo "$SSH_KEY" > ~/.ssh/staging.key

 chmod 600 ~/.ssh/staging.key

 cat >>~/.ssh/config <<END

 Host staging

 HostName $SSH_HOST

 User $SSH_USER

 Port $SSH_PORT

 IdentityFile ~/.ssh/staging.key

 StrictHostKeyChecking no

 LogLevel INFO

 END

 # 3. Create the $SSH_ASKPASS with script that just echos $SSHPASS value

to negate asking for passphrase during ssh connection

 - name: Create SSH_ASKPASS

 run: |

 cat > /tmp/ssh-askpass-script <<EOL

 #!/bin/bash

 echo $SSHPASS

 EOL

 chmod +x /tmp/ssh-askpass-script

 SOFWERX | 1925 E 2nd Avenue, Suite 102, Tampa, FL 33605

sofwerx.org | 813.693.5599

 # 4. Sets display to :0.0 and uses setsid to ensure that ssh will use

$SSH_ASKPASS value. Connects to the staging defined in hosts file and runs

mysqldump.

 - name: Run mysqldump via SSH

 run: |

 DISPLAY=":0.0" SSH_ASKPASS="/tmp/ssh-askpass-script" setsid ssh

staging mysqldump --skip-add-drop-table --skip-extended-insert -u ${{

secrets.DB_STAGE_USER }} -p${{ secrets.DB_STAGE_PASSWORD }} ${{

secrets.DB_STAGE_NAME }} > backup-${{ steps.time.outputs.date }}.sql

 # 5. Save the copied backup as an artifact

 - name: Archive Database Backup

 uses: actions/upload-artifact@v2

 with:

 name: backup-${{ steps.time.outputs.date }}

 path: backup-${{ steps.time.outputs.date }}.sql

 # FTP Deploy

 deploy:

 runs-on: ubuntu-latest

 # Only attempt to deploy the files if the mysql server has backed up

 needs: backup

 name: Deploy via FTP

 steps:

 # 1. Checkout the Repository up to 20 commit history

 - uses: actions/checkout@v2

 with:

 fetch-depth: 20

 - name: FTP Deploy

 uses: SamKirkland/FTP-Deploy-Action@3.1.1

 with:

 ftp-server: ${{ secrets.FTP_STAGE_SERVER }}

 ftp-username: ${{ secrets.FTP_STAGE_USER }}

 ftp-password: ${{ secrets.FTP_STAGE_PASSWORD }}

 # The directory that will be uploaded. Anything that is not in this

folder will not be uploaded.

 local-dir: public

 # TODO: Remove dry run when finalized

 git-ftp-args: --dry-run

